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Integers

Determine the largest representable integer with the intmax

command.
intmax
ans =
int32
2147483647
2147483647+1
ans =
2.1475e+09

Remark

The set of representable numbers has upper- and lower bound (maybe it
is large, but finite). Not all the numbers are representable between the
bounds!
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Floating point numbers

The form of nonzero floating point numbers

±ak
(m1

a
+

m2

a2
+ · · · mt

at

)
, where k is the exponent or

characteristic and (m1, . . . ,mt) is the mantissa.

Storage of floating point numbers:

[±, k,m1, . . . ,mt ], 1 ≤ m1 ≤ a− 1, 0 ≤ mi ≤ a− 1, i = 2, . . . , t

If k(−) ≤ k ≤ k(+), then the largest representable floating point number is

M∞ = ak(+)

(
a− 1

a
+

a− 1

a2
+ · · ·+ a− 1

at

)
= ak(+) (1− a−t).

The smallest representable floating point number is −M∞.
The floating point number nearest to zero: ε0 = ak(−)−1

Machine epsilon: ε1 = a1−t , where 1 + ε1 is the subsequent representable
floating point number after 1.
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Floating Point Arithmetic, Rounding

Rounding of the input:
Let |x | ≤ M∞ an let x̃ be the floating point number assigned to x , then

x̃ =

{
0, if |x | < ε0,

the floating point number nearest to x , if ε0 ≤ |x | ≤ M∞.

Then the rounding error is

|x − x̃ | ≤

{
ε0, if |x | < ε0,
1
2ε1|x |, if ε0 ≤ |x | ≤ M∞.

If truncation is used, that is to say, x̃ will be the nearest floating point
number to x between x and zero, then the the rounding error will be ε1

instead of 1
2ε1.
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Floating Point Arithmetic, Rounding

Rounding errors occurring during arithmetic operations

Example

Let a = 10, t = 3, k− = −3, k+ = 3. Then ε1 = 0.01.
Let us add x = 3.45 and y = 0.567. The exponents (k1 = 1, k2 = 0) are
different. It should have to be made them equal, so we shift the mantissa
right by k1 − k2 = 1 digits:

+ 1 345
+ + 0 567
= + 1 345
+ + 1 0567
= + 1 4017

There is not enough digits to store the result because t = 3. After
rounding we have the following result + 1 402 which is not exact.
We can derive the estimate for the rounding error:

|exact− numerical| = 0.003 = ε1 ∗ 0.3 =
1

2
ε1 ∗ 0.6 <

1

2
ε1 ∗ |exact|
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Floating Point Arithmetic, Rounding

The previous estimate for the rounding error is true in general. It can be
verified in a pretty similar way that the rounding error in the case of
truncation is twice as much as in the case of rounding.
Let us denote with � one of the basic operations +, −, ∗, / and with ε�
the rounding error, then

|ε�| ≤ ε1 ∗

{
1 in the case of truncation
1
2 in the case of rounding.

Important remark

The above estimate is not valid if the absolute value of the result is less
than ε0 (underflow) or its absolute value is greater than M∞ (overflow).

The absolute value can be misleading without the magnitude of the
input. This phenomena justifies the introduction of the relative error:∣∣∣∣exact− numerical

exact

∣∣∣∣ =

∣∣∣∣ z̃ − z

z

∣∣∣∣
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Accumulation of Errors

Addition

Suppose we have to add n + 1 floating point numbers (x0, . . . , xn),
practically we add xk+1 to the kth partial sumSk and then we apply
truncation. The first partial sum is:

S̃1 = x̃0 + x1 = (x0 + x1)(1 + ε01) = S1 + ε01S1, ahol |ε01| ≤ ε1.

Repeating this process n times, and taking into account that the actual
error is always less then or equal to the machine epsilon, we have the
following estimate for the absolute error:

|S̃n − Sn| ≤ ε1

(
n|x0|+ n|x1|+ (n − 1)|x2|+ · · ·+ 2|xn−1|+ |xn|

)
.

This shows that it is reasonable to start the addition with the smallest
term (in absolute value).
For the relative error we get the estimate∣∣∣∣∣ S̃n − Sn

Sn

∣∣∣∣∣ ≤ nε1 that is, if nε1 ≥ 1 the result is not acceptable.
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Accumulation of Errors

Multiplication

Quite similarly to the case of addition, the relative error of multiplication
is ∣∣∣∣∣ P̃n − Pn

Pn

∣∣∣∣∣ ≤ nε1.

This error is acceptable if

nε1 ≤
1

a + 1
2

,

where a is the base of the representation of numbers.
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Linear system of equations, condition number

Norm of matrices
Let A ∈Mn×n, then the quantities

‖A‖1 := max
j

n∑
i=1

|aij |, ‖A‖∞ := max
i

n∑
j=1

|aij |

are called the one norm and infinity norm of the matrix A. Because of
their calculation method, one norm is also called column sum norm, and
infinity norm is called row sum norm.

Let A be a regular matrix and b be a nonzero vector. Let’s consider the
linear system of equations Ax = b. Assume that the right-hand side
vector b is perturbed with the error δb, and solve Ax = b + δb instead of
the original system. Then the solution will bex + δx instead of x , and the
relative error of the solution is

‖δx‖
‖x‖

≤ ‖A‖ · ‖A−1‖ · ‖δb‖
‖b‖

.

The number ‖A‖ · ‖A−1‖ is called the condition number of the matrixA.
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Linear system of equations, condition number

Properties of condition number
1 The condition number depends on the norm.

2 The condition number is greater then or equal to one.

3 If the condition number is greater than or equal to 1
ε1

, then the error
can be unacceptable. In this case the matrix is called
ill-conditioned.

If the matrix is perturbed, then the relative error of the solution can be
estimated the following way:

‖δx‖
‖x‖

≤ κ

1− κ
, ahol κ =≤ ‖A‖ · ‖A−1‖ · ‖δA‖

‖A‖
.
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Least square approximation

Linear case

Given m points on the plane (t1, f1), . . . (tm, fm). We are looking for the
straight line which ”fits” the best in some sense to these data.

More
precisely, we would like to find a function F (t) = a + bt such that its
difference from the given points is minimal in the least square sense.

m∑
i=1

(F (ti )− fi )
2 =

m∑
i=1

(a + bti − fi )
2.

This entails the solution of the following system: m
∑m

i=1 ti∑m
i=1 ti

∑m
i=1 t

2
i

a
b

 =

 ∑m
i=1 fi∑m
i=1 ti fi


The augmented matrix is (ATA|AT f ), where

AT =

[
1 · · · 1
t1 · · · tm

]
, f T =

[
f1 · · · fm

]
.
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Least square approximation

General case
Let ϕ1, . . . , ϕn be a given system of functions with n elements. We are
looking for n parameters x1, . . . , xn such that the difference∑m

i=1(F (ti )− fi )
2 is minimal, where F (t) = x1ϕ1(t) + · · ·+ xnϕn(t). In

detail, we should solve the following minimization problem:

min
x1,...,xn

{
m∑
i=1

(
n∑

j=1

xjϕj(ti )− fi

)2}
.

Like in the linear case, this requires the solution of the linear system
below.ϕ1(t1) · · · ϕ1(tm)

... · · ·
...

ϕn(t1) · · · ϕn(tm)


︸ ︷︷ ︸

AT

ϕ1(t1) · · · ϕn(t1)
... · · ·

...
ϕ1(tm) · · · ϕn(tm)


︸ ︷︷ ︸

A

x1

...
xn

 =

ϕ1(t1) · · · ϕ1(tm)
... · · ·

...
ϕn(t1) · · · ϕn(tm)


︸ ︷︷ ︸

AT

 f1
...
fm


︸ ︷︷ ︸

f
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Least square approximation

Using the previous notations we get the equation

ATAx = AT f

which is called the Gaussian normal equation.

Remark
The normal equation always has a solution, which is unique if the
columns of A are linearly independent. If they are dependent, then the
model is complicated. We can increase the number of rows, or decrease
the number of columns to rid of the dependency of the columns of A.
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Lagrangian interpolation

Denote by Pn the space of polynomials with degree at most n, that is,
p ∈ Pn if and only if p : R→ R and

p(x) = a0 + a1x1 + · · ·+ anx
n,

where ai ∈ R, i = 1, . . . , n are given.

The interpolation problem

Let x0, . . . , xn, f0, . . . , fn be given real numbers such that xi 6= xj , if i 6= j .
Find the polynomial p ∈ Pn with the property

p(xi ) = fi , i = 0, . . . , n.

Pál Burai



Lagrangian interpolation

The polynomial

lj(x) :=
n∏

i=0
i 6=j

x − xi
xj − xi

is said to be the jth Lagrangian basic polynomial.

The solution of the Lagrangian interpolation problem

Using the previous notations the polynomial

Ln(x) :=
n∑

i=1

fili (x)

fulfils all the requirements of the Lagrangian interpolation problem.

Theorem
The solution of the Lagrangian interpolation problem Ln is unique.
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Lagrangian interpolation

Newton’s interpolation polynomials

Besides the previous notations let Nk be the polynomial with degree k
0 < k ≤ n which fits to the data {xi , fi}ki=0. Then Lk = Nk . We use a
different method like in the case of Lagrange polynomials. Let

N0(x) = N0(x0) := b0 = f0.

Find now N1(x) = N0(x) + b1(x − x0). We have

N1(x) = f0 +
f1 − f0
x1 − x0

(x − x0).

In the kth step we would like to find

Nk(x) = Nk−1(x) + bkωk(x), k = 1, . . . , n,

where

ω0(x) ≡ 1, ωk =
k−1∏
j=0

(x − xj), k = 1, . . . , n.
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Lagrangian interpolation

Newton’s recursion
The required polynomial is

Nn(x) =
n∑

i=0

biωi (x).

Calculation of the coefficients of Newton’s polynomial

Nk(x) = Lk(x) =
k∑

i=0

fi

k∏
j=0
j 6=i

x − xj
xi − xj

= xk
k∑

i=0

fi

k∏
j=0
j 6=i

1

xi − xj
+ Q(x),

where the degree of Q(x) is strictly less than k , so

bk =
k∑

i=0

fi

k∏
j=0
j 6=i

1

xi − xj
=: [x0, . . . , xk ]f .
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Lagrangian interpolation

The expression [x0, . . . , xk ]f is called the kth order divided difference of
f with respect to the base points x0, . . . , xk . For 0 ≤ m < k ≤ n we get

[xm, . . . , xk ]f =
[xm+1, . . . , xk ]f − [xm, . . . , xk−1]f

xk − xm
.

Using the above mentioned formula we can calculate the coefficients with
the scheme:

x0 [x0]f ↘
[x0, x1]f ↘

x1 [x1]f ↗ [x0, x1, x2]f ↘
↘ [x1, x2]f ↗ . . .

x2 [x2]f ↗ ↘
...

... [x0, . . . , xn]f
xn−1 [xn−1]f ↘ ↗

. . . . . .
xn [xn]f ↗
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Error of Lagrangian interpolation

Theorem
Assume that f is n + 1 times continuously differentiable on the interval
[a, b], a := x0, b := xn. Then for all x ∈ [a, b] there is a ξ(x) ∈ [a, b] such
that

f (x)−Ln(x) =
f (n+1)(ξ(x))

(n + 1)!
ωn(x),

Corollary

With the assumption of the previous theorem, if
maxx∈[a,b] |f (n+1)(x)| ≤ Mn+1, then

|f (x)−Ln(x)| ≤ Mn+1

(n + 1)!
|ωn(x)|, x ∈ [a, b].
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Hermitian interpolation

Find the polynomial H for which

H(j)(xi ) = fij , i = 0, . . . , n, j = 0, . . . ,mi − 1,

where xi s and fijs are given real numbers a, mi s are given natural
numbers, and H(j) denotes the jth derivative of H.

Theorem

Let m :=
∑n

i=0 mi , then the Hermitian interpolation problem has a
unique solution in Pm−1.

Coefficients of the Hermite interpolation polynomial

We use a similar method as in the case of Lagrange interpolation.
Namely, a modified version of Newton’s iteration. In the scheme each
node xi appears mi times as well as fi0. Let us write fi1 in the third
column of the scheme instead of 0/0 and the first order divided
differences otherwise. In a similar way, instead of 0/0 in the fourth
column we write 1

2 fi2, and so on.
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Piecewise polynomial interpolation

The problem

The interpolation polynomial can behave hectic near the endpoints in the
previous models. To avoid this phenomena it is reasonable to
approximate the data in every subintervals respectively. We can add
smoothness constraints at the nodes.

Piecewise linear approximation

We join the points with a polygonal line. We require only continuity in
this case. The exact form of the affine function on the ith interval is:

ϕi (x) = fi +
(fi+1 − fi )

(xi+1 − xi )
(x − xi ), x ∈ [xi , xi+1], i = 1, . . . , n.

For higher order approximation it is needed to know the values of the
derivatives up to the given order. From these we can construct the
piecewise Hermite interpolation.
Another possibility is to produce the piecewise interpolation on the whole
interval simultaneously.
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Numerical integration, Elementary quadrature formulae

Let [x0, x1] be a proper interval and f : [x0, x1]→ R be a Riemann
integrable function.

The midpoint rule or rectangle rule∫ x1

x0

f (x) dx ≈ (x1 − x0)f
(x0 + x1

2

)
= h1f (m1).

Trapezoidal rule∫ x1

x0

f (x)dx ≈ (x1 − x0)

2
(f (x0) + f (x1)) =

h1

2
(f (x0) + f (x1)) .

Simpson’s rule∫ x1

x0

f (x) dx ≈ (x1 − x0)

6

(
f (x0) + 4f

(x0 + x1

2

)
+ f (x1)

)
=

h1

6
(f (x0) + 4f (m1) + f (x1)) .
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Numerical integration

A general quadrature rule

Let [a, b] be a proper interval and f : [a, b]→ R be a Riemann integrable
function, then we look for the approximate value of the integral in the
following form: ∫ b

a

f (x)dx ≈
n∑

i=0

ai f (xi ),

where ai are given weights.

We can get a quadrature rule like this if we integrate the Lagrangian
interpolation polynomial.∫ b

a

f (x)dx ≈
∫ b

a

Ln(x)dx =
n∑

i=0

f (xi )

∫ b

a

li (x)dx .

This type of quadrature rules (if the nodes are equidistant) are called
Newton-Cotes formulae.
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Numerical integration

Error of the Newton-Cotes formulae∣∣∣∣∣
∫ b

a

(f (x)−Ln(x))dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f (n+1)(ξ(x))

(n + 1)!
ωn(x)dx

∣∣∣∣∣ ≤
Mn+1

(n + 1)!

∫ b

a

|ωn(x)|dx ≤ Mn+1

(n + 1)!
(b − a)n+1.
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Nonlinear equations, bisection method

Consider a continuous function f : [a, b]→ R and assume that
f (a)f (b) < 0, that is, the signs of the values are different at the ends of
the interval. According to Bolzano’s theorem every continuous function
has the Darboux property (intermediate value property), so, there is a
x̄ ∈]a, b[, such that

f (x̄) = 0.

Theoretical algorithm

Initialization: x0 := a, y0 := a, m0 := x0+y0

2 , k := 0.

If f (mk) = 0, then STOP, otherwise go to the second step.

If f (xk)f (mk) < 0, then let xk+1 := xk and yk+1 := mk , otherwise
xk+1 := mk and yk+1 := yk , k := k + 1. Go to the first step.

It is reasonable to give the maximum number of iterations in practice in
order to avoid an infinite loop. Moreover, it is more practical to require
|xk − yk | ≤ ε instead of f (mk) = 0. Then one should change the
stopping rule.
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Nonlinear equations, Banach iteration

Let T : [a, b]→ [a, b] be a function which fulfils the inequality

|T (x)− T (y)| ≤ q|x − y |, x , y ∈ [a, b]

with some constant 0 < q < 1. Then T is said to be a q-contraction.

Álĺıtás (Banach)

Besides the above mentioned assumptions, there is a x̄ ∈ [a, b] such that

T (x̄) = x̄ .

Moreover, for an arbitrary x ∈ [a, b] the iteration x0 = x, xk+1 = T (xk) is
convergent, and

lim
k→∞

xk = x̄ .

The x̄ with the previous property is called a fixed point of T . One can
look for the fixed point of the function T (x) = x − ωf (x) instead of a
root of the function f : [a, b]→ R if there is a parameter ω for which T
will be a contraction.
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Nonlinear equations

Newton iteration

xk+1 = xk −
f (xk)

f ′(xk)

The bisection method and the Banach iteration are globally
convergent.

The bisection method and the Banach iteration can be applied for
non-differentiable functions.

The speed of convergence of the bisection method and the Banach
iteration is slower than the speed of convergence of Newton’s
method.

The Newton iteration is convergent in general if the starting point
x0 is ”close enough” to a root of the function. However, there are
known global convergence theorems too for the Newton iteration.

For the Newton iteration differentiability is needed, to ensure the
convergence two times differentiability is needed.
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Exercises

Find an approximate value of
√

2 using the introduced three
methods!

Let us approximate the root of the equation ex = 3x on the interval
[0, 1] using the introduced three methods!

Looking for a stationary point

If a function is differentiable and it has a local extreme value at x̄ , then
the derivative is zero at the same point. So, the introduced methods can
be applied to solve optimization problems numerically.

Exercise
Let us approximate a stationary point of the function
f (x) = (x − 1)2(x + 1)2.
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